TOSHIBA BiCD Digital Silicon Monolithic Integrated Circuit TB62734FMG

Step Up Type DC - DC Converter for White LED

Features

TB62734FMG is the high efficient STEP-UP type DC/DC converter by which the optimal design was carried out at constant current driver of white LED. It is possible to drive $2 \sim 6$ white LEDs which connected in series by the lithium ion battery. This IC contains the Nch-MOS transistor required for switching of external inductor. The forward current of LED is set up by the external resistor. As the brightness control function, an analog voltage input and a pulse input system (PWM) are possible. The switching frequency is fixed at around 1.0 Mhz . This IC is the most suitable as a driver of white LED back lighting of the color LCD in the PDA, the cellular phone and the handy terminal machine.

Characteristics

Brightness control function : LED forward current 30~100\%
Maximum output voltage : over 26V
Variable of the LED current by external resistance
20mA(TYP.) @ RSENS=7.5
Output power: 500 mW
Package : SON8-P-0. 65 (Typical Height : 0.8 mm)
High efficiency : 85\% (Recommended parts in use)
Low resistance power MOS include
Ron=0.7 (TYP.) @ Vin=2.8~5.5V
Over voltage detection includes
Protection Voltage : OVD pin =20V (TYP.)

Note 1) This IC has the terminal (3 pin : HBM spec $< \pm 1.5 \mathrm{kV}$) which is marginal for ESD. The careful caution must be required for all handling stage. And also, this device must be assembled in correct position, in case of Assembled in the wrong direction, this IC might be destroyed.
Note 2) In case the control pin is open, unstable operation of the output should be caused. Therefore, this control terminal must be fixed to the certain logic level.
Note 3) About solder ability, following conditions were confirmed
-Solder ability
(1)Use of Sn-63Pd solder Bath solder bath temperature $=230^{\circ} \mathrm{C}$, dipping time $=5$ seconds, the number of times $=$ once, use of R-type flux
(2)Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath
solder bath temperature $=245^{\circ} \mathrm{C}$, dipping time $=5$ seconds, the number of times $=$ once, use of R -type flux

Block Diagram

Explanation of the terminal

No	Symbol	Function
1	VCC	Supply voltage pin. Supply voltage range : 2.8 V to 5.5 V
2	CTL	Input pin for IC ON/OFF control and variable LED Io. 0 to 0.4 V : Shutdown Mode (IC shutdown) 1.0 V to 2.5 V : lo $=30$ to 100% Variable (Linear Control) Over 2.6V : lo = 100\%
3	OVD	Feed-buck pin for output voltage
4	A	Sink driver pin for step- up DC-DC converter
5	PGND	Ground pin for power line
6	GND	Ground pin
7	RSENS	Resistance connects pin for LED lo setup.
8	K	Connected to the cathode of LED

Timing Chart

[^0]| Absolute Maximum Ratings (Topr = $25{ }^{\circ} \mathrm{C}$ If not specified) | | | |
| :---: | :---: | :---: | :---: |
| Item | Symbol | Ratings | Unit |
| Power supply Voltage | Vcc | -0.3 to +6.0 | V |
| Input Voltage | Vin | -0.3 to +VCC + 0.3 | V |
| Switching Terminal Voltage | Vo(A) | - 0.3 to +24 | V |
| OVD Voltage | V (ovd) | - 0.3 to +18 | V |
| Power Dissipation | Pd | 0.41 (Device) | W |
| | | 0.47 (With PCB) Note1 300 (Device) | |
| Thermal Resistance | Rth(j-a)2 | 260 (With PCB) | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Operating Temperature range | | -40 to +85 | |
| Storage Temperature | Tstg | -40 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Maximum Junction Temperature | Tj | 125 | |

Note 1 : When every time the ambient temperature gets over $25^{\circ} \mathrm{C}$ with $1^{\circ} \mathrm{C}$, the allowable loss must reduce $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ more than maximum rated value. (When on PCB.)

Recommended Operating Condition (Topr $=-40$ to $85^{\circ} \mathrm{C}$ If not Specified)

Item	Sy	Measurement Condition	Min.	Typ.	Max.	Unit
Power Supply Voltage	Vcc	-	2.8	Typ	5.5	V
CTL Terminal H level Input Voltage	Vctl H	-	$\begin{aligned} & \text { VCC } \\ & -0.5 \end{aligned}$	-	VCC	
CTL Terminal L Level Input Voltage	Vctl L	${ }^{-}$	0	-	0.4	V
LED Current (Average Value)	Io1	$\begin{gathered} \text { VCC }=3.6 \mathrm{~V}, \text { RSENS }=7.5 \Omega \\ 6 \mathrm{LED}, \text { Topr }=25^{\circ} \mathrm{C} \end{gathered}$	-	20	-	mA
	102	$\begin{gathered} \text { VCC }=3.6 \mathrm{~V}, \text { RSENS }=7.5 \Omega \\ 4 \text { LED, Topr }=25^{\circ} \mathrm{C} \end{gathered}$	-	20	-	mA
	lo3	$\begin{gathered} \text { VCC=3.6V, RSENS }=3.3 \Omega \\ 3 \text { LED, Topr }=25^{\circ} \mathrm{C} \end{gathered}$	-	40	-	mA

Electrical Characteristics (Topr=-40 to $85^{\circ} \mathrm{C}, \mathrm{Vcc}=\mathbf{2 . 8}$ to 5.5 V , If not Specified)

Item Operating Consumption Current Quiescent Consumption Current	$\begin{aligned} & \text { Symbol } \\ & \text { Icc(On) } \\ & \text { Icc(Off) } \end{aligned}$	$\begin{gathered} \text { Measurement Condition } \\ \text { Vcc=3.6V, RSENS }=8.2 \Omega \\ \mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{VCTL}=0 \mathrm{~V} \end{gathered}$	Min.	$\begin{gathered} \text { Typ. } \\ 0.9 \\ 0.5 \end{gathered}$	$\begin{gathered} \text { Max. } \\ 1.5 \\ 1.0 \end{gathered}$	Unit mA uA
CTL Terminal Current Integrated MOS-Tr ON Resistance	I_CTL Ron	$\begin{gathered} \mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{VCTL}=3 \mathrm{~V} \\ \mathrm{Io}(\mathrm{~A})=\text { greater than } 400 \mathrm{~mA} \end{gathered}$	$\begin{gathered} +/- \\ 7 \end{gathered}$	$\begin{aligned} & +/- \\ & 12 \\ & 0.7 \end{aligned}$	$\begin{aligned} & +/- \\ & 21 \\ & 1.5 \end{aligned}$	uA Ω
Integrated MOS-Tr Switching Frequency A Terminal Protection Voltage Switching Terminal Current	$\begin{aligned} & \text { fOSC } \\ & \mathrm{Vo}(\mathrm{~A}) \\ & \mathrm{lo}(\mathrm{~A}) \end{aligned}$	$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{Vctl}=3.0 \mathrm{~V}$ $\mathrm{Topr}=25^{\circ} \mathrm{C}$ 6 Series white LED are also driven	0.75 24	$\begin{aligned} & 1.0 \\ & 26 \\ & 600 \end{aligned}$	1.39	$\begin{gathered} \mathrm{MHz} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
Switching Terminal Leakage Current	loz(A)	$\mathrm{Vo}(\mathrm{A})=22 \mathrm{~V}$	-	0.5	1	uA
OVD Terminal Voltage OVD Terminal Leakage Current	$\begin{gathered} \text { Vovd } \\ \text { loz(ovd) } \end{gathered}$	Vovd=18V	19	21 0.5	23 1	V uA
LED Current (Average Value)	lo2	$\begin{gathered} \text { VCC }=3.6 \mathrm{~V}, \text { RSENS }=7.5 \Omega \\ \text { Topr }=25^{\circ} \mathrm{C}, \mathrm{~L}=6.8 \mathrm{uH} \\ \hline \end{gathered}$	18	20	22	mA

[Setting of capacitance of output side]

The larger than $\mathrm{C} 2=0.47(\mathrm{uF})$ should be recommended.

[Setting of external Inductor size]

Reference) According to the number of LED, the inductor size should be selected larger than the value indicated in the table.

Number of LED	Vin=2.8V	Vin=4.3V	Note
2	4.7	3.6	
3	6.8	4.7	Io=20mA
4	8.1	6.8	Unit : uH
5	10	8.1	
6			

[Setting of lo]

Resistance connects between RSENS pin and GND.
The resistor of RSENS (K terminal and Ground) is for setting of output current (lo).
The average current is set by this RSENS value and average current are obtained by the following equation. (Please choose a equation according to the number of LED)

$$
\begin{aligned}
& \text { 2LED: lo }=119.16 \times \text { Rsens }^{-0.8399} \\
& \text { 3LED : lo }=115.32 \times \text { Rsens }^{-0.854} \\
& \text { 4LED : lo }=113.08 \times \text { Rsens }^{-0.8614} \\
& \text { 5LED : lo }=108.02 \times \text { Rsens }^{-0.8534} \\
& 6 \text { LED : lo }=106.71 \times \text { Rsens }^{-0.836}
\end{aligned}
$$

It is an equation when setting up by inductor of the size which we recommend.
When different L from the size which we recommend is used, The average current cannot be computed with the above-mentioned equation.

[Current control by CTL pin]
This IC can carry out variable of the lo current by external resistance.Variable range : 30 to 100%

CTL Voltage	VCTL=0V to 0.4 V	VCTL=1V to2.5V	VCTL>2.5V	Note
Io Valuable Rate	0	$30-100$	100	Unit : \%

The tole rance of linearity when converting $\mathrm{V}-\mathrm{A}$ is expecting to be $+/-10 \%$.

(1) The example of Application Circuit and Measurement data : Inductor 1001AS Series (Toko)

L : 1001AS Series (Size $3.8 \times 3.8 \times 1.2 \mathrm{~mm}$)
S-Di : CUS02 1A/30V (TOSHIBA)
LED : NSCW215T (NICHIA)

<Measurement Data>
Efficiency in the range of Vin=2.8 to 5.5 V

	Efficiency (\%)	Average Efficiency(\%)
2 LED	87.25 to 91.90	90.00
3 LED	85.04 to 88.75	87.24
4 LED	83.18 to 86.95	85.50
5 LED	81.15 to 85.36	83.93
6 LED	82.11 to 85.87	84.35

Output Current in the range of Vin=2.8 to 5.5 V

	Output Current (mA)	Tolerance (\%)
2 LED	20.90 to 23.96	$14.65(5.87)$
3 LED	20.80 to 22.62	$8.77(3.88)$
4 LED	20.18 to 21.78	$7.89(3.66)$
5 LED	19.82 to 21.34	$7.67(3.47)$
6 LED	19.95 to 21.40	$7.26(3.22)$

() : renge of Vin=3.0 to 4.3 V
(2) example of Application Circuit and Measurement data : Inductor CXLD120 Series (Sumitomo)

$\begin{array}{ll}\mathrm{L} & : \text { 1001AS Series (Size3.0×2.65×1.20mm) } \\ \text { S-Di } & : \text { CUS02 1A/30V (TOSHIBA) } \\ \text { LED } & : \text { NSCW215T (NICHIA) }\end{array}$

<Measurement Data>
Efficiency in the range of Vin=2.8 to 5.5 V

	Efficiency(\%)	Average Efficiency (\%)
2 LED	87.34 to 91.82	89.87
3 LED	85.46 to 89.50	87.81
4 LED	84.22 to 87.99	86.33
5 LED	81.65 to 86.49	84.84
6 LED	83.53 to 87.63	86.15
Output Current in the range of Vin=2.8 to 5.5 V		
	Output Current (mA)	Tolerance (\%)
2 LED	20.93 to 24.06	$14.95(6.01)$
3 LED	20.69 to 22.56	$9.02(3.96)$
4 LED	20.22 to 21.77	$7.66(3.49)$
5 LED	19.78 to 21.30	$7.69(3.51)$
6 LED	20.28 to 21.55	$6.28(2.71)$

() : renge of Vin=3.0 to 4.3 V
(3) The example of Application Circuit and Measurement data : Inductor VLF3010 Series (TDK)

L	: VLF3010 Series (Size3.0×3.0×1.0mm)
S-Di	$:$ CUS02 1A/30V (TOSHIBA)
LED	$:$ NSCW215T (NICHIA)

<Measurement Data>
Efficiency in the range of Vin=2.8 to 5.5 V

	Efficiency(\%)	Average Efficiency (\%)
2 LED	85.70 to 90.39	88.47
3 LED	84.51 to 88.15	86.76
4 LED	83.06 to 86.97	85.30
5 LED	80.94 to 85.78	84.07
6 LED	82.28 to 86.85	85.11

Output Current in the range of Vin=2.8 to 5.5 V

	Output Current (mA)	Tolerance (\%)
2 LED	21.00 to 24.01	$14.35(5.53)$
3 LED	20.57 to 22.48	$9.27(4.06)$
4 LED	20.03 to 21.69	$8.24(3.74)$
5 LED	19.44 to 21.14	$8.75(4.07)$
6 LED	19.96 to 21.46	$7.52(3.40)$

() : renge of Vin=3.0 to 4.3 V
(3) The example of Application Circuit and Measurement data : Inductor CXML322509-150 (Sumitomo)

<Measurement Data>
Efficiency in the range of $\mathrm{Vin}=2.8$ to 5.5 V

	Efficiency(\%)	Average Efficiency (\%)
2 LED	88.75 to 91.85	90.07
3 LED	86.77 to 88.22	87.13
4 LED	84.00 to 85.65	84.71
5 LED	82.13 to 84.38	83.34
6 LED	80.39 to 82.92	81.98

Output Current in the range of Vin=2.8 to 5.5 V

	Output Current (mA)	Tolerance (\%)
2 LED	22.00 to 24.04	$9.30(3.85)$
3 LED	21.39 to 23.00	$7.49(3.56)$
4 LED	20.82 to 22.41	$7.61(3.65)$
5 LED	20.39 to 21.99	$7.82(3.75)$
6 LED	19.84 to 21.57	$8.69(4.26)$

() : renge of $\mathrm{Vin}=3.0$ to 4.3 V

Package (Dimensions)

SON8-P-0.65
Unit : mm

Marking

2'nd Half of year (27 to 53 week)

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

[^0]: 2.6V

 CTL Terminal Current
 \qquad

